Visual Representations:
a. Histograms: You can create histograms to visualize the distribution of your numeric variables (e.g., obesity rates, inactivity rates, diabetes rates). Use libraries like Matplotlib or Seaborn to create these plots. Here’s a basic example of how to create a histogram using matplotlib:
code:
import matplotlib.pyplot as plt
# Assuming ‘data’ is your dataset
plt.hist(data[‘obesity_rate’], bins=20, color=’blue’, alpha=0.7)
plt.xlabel(‘Obesity Rate’)
plt.ylabel(‘Frequency’)
plt.title(‘Distribution of Obesity Rates’)
plt.show()
b. Box Plots: Box plots are useful for visualizing the summary statistics of your data, including outliers. You can use the same libraries (Matplotlib or Seaborn) to create box plots. Here’s an example:
code:
import seaborn as sns
import matplotlib.pyplot as plt
# Assuming ‘data’ is your dataset
sns.boxplot(x=’state’, y=’obesity_rate’, data=data)
plt.xlabel(‘State’)
plt.ylabel(‘Obesity Rate’)
plt.title(‘Box Plot of Obesity Rates by State’)
plt.xticks(rotation=90) # Rotate x-axis labels for better readability
plt.show()
